string(4) "test" QARORLAR DARAXTINI QURISH ALGORITMLARI | International Conference on Science, Engineering & Technology
Skip to main navigation menu Skip to main content Skip to site footer

QARORLAR DARAXTINI QURISH ALGORITMLARI

Abstract

Qarorlar daraxti (Decision Tree) — bu ma'lumotlarni tasniflash va regresiya masalalarini yechishda keng qo'llaniladigan mashinali o'rganish algoritmi. Ushbu maqolada qarorlar daraxtini qurishning asosiy algoritmlari, ularning ishlash prinsiplari, afzalliklari va kamchiliklari tahlil qilinadi. Quyidagi algoritmlar: ID3, C4.5, CART (Classification and Regression Tree), va boshqa o'xshash metodlar tafsilotlar bilan muhokama qilinadi. Har bir metodning ta'sirchanligi, yirik ma'lumotlar bazalarida qo'llanilishi, va generalizatsiya xususiyatlari ko'rib chiqiladi. Maqola qarorlar daraxtini qurishda ishlatiladigan ba'zi zamonaviy optimallashtirish yondashuvlari haqida ham ma'lumot beradi.

PDF

References

  1. Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning, 1(1), 81–106.
  2. Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1986). Classification and Regression Trees. Wadsworth & Brooks.
  3. Hunt, E. B., Marin, J. P., & Stone, P. J. (1966). Experiments in Induction. Academic Press.
  4. Tan, P.-N., Steinbach, M., & Kumar, V. (2006). Introduction to Data Mining. Addison-Wesley.
  5. Nurmatovich, T. I. (2024). Bir qatlamli va ko ‘p qatlamli neyron to ‘rlari. ILM FAN XABARNOMASI, 1(1), 190-191.
  6. Nurmamatovich, T. I., & Kudratullo o‘g, K. U. B. (2024). THE EVOLUTION OF AI: FROM EARLY CONCEPTS TO MODERN BREAKTHROUGHS. Лучшие интеллектуальные исследования, 20(2), 42-46.
  7. Nurmamatovich, T. I. (2024, April). SUN'IY NEYRONNING MATEMATIK MODELI HAMDA FAOLLASHTIRISH FUNKTSIYALARI. In " USA" INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE TOPICAL ISSUES OF SCIENCE (Vol. 17, No. 1).
  8. Nurmamatovich, T. I. (2024, April). SUNIY NEYRON TORLARINI ADAPTIV KUCHAYTIRISH USULI. In " USA" INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE TOPICAL ISSUES OF SCIENCE (Vol. 17, No. 1).
  9. Nurmamatovich, T. I. (2024). XEBB O’QITISH QOIDASI. " GERMANY" MODERN SCIENTIFIC RESEARCH: ACHIEVEMENTS, INNOVATIONS AND DEVELOPMENT PROSPECTS, 17(1).
  10. Nurmamatovich, T. I., & Azizjon o’g, N. A. Z. (2024). Neural network clustering methods. American Journal of Open University Education, 1(1), 16-18.
  11. Nurmamatovich, T. I., & Azizjon o’g, N. A. Z. (2024). The SQL server language and its structure. American Journal of Open University Education, 1(1), 11-15.
  12. Ortiqovich, Q. R., & Nurmamatovich, T. I. (2023). NEYRON TARMOQNI O ‘QITISH USULLARI VA ALGORITMLARI. Scientific Impulse, 1(10), 37-46.
  13. Nurmamatovich, T. I., & Nabiyev, A. (2024). KUCHAYTIRISH USULLARI VA FILTERLASH HISOBIDAN KUCHAYTIRISH. " RUSSIAN" ИННОВАЦИОННЫЕ ПОДХОДЫ В СОВРЕМЕННОЙ НАУКЕ, 17(1).
  14. Nurmamatovich, T. I., & Nabiyev, A. (2024). KUCHAYTIRISH USULLARI VA FILTERLASH HISOBIDAN KUCHAYTIRISH. " RUSSIAN" ИННОВАЦИОННЫЕ ПОДХОДЫ В СОВРЕМЕННОЙ НАУКЕ, 17(1).
  15. Tojimamatov, I., & Doniyorbek, A. (2023). KATTA HAJMLI MA’LUMOTLAR AFZALLIKLARI VA KAMCHILIKLARI. ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 18(6), 66-70.
  16. Raximov, Q. O., Tojimamatov, I. N., & Xo, H. R. O. G. L. (2023). SUNIY NЕYRON TARMOQLARNI UMUMIY TASNIFI. Scientific progress, 4(5), 99-107.